Unconditionality with Respect to Orthonormal Systems in Noncommutative L2 Spaces
نویسنده
چکیده
Orthonormal systems in commutative L2 spaces can be used to classify Banach spaces. When the system is complete and satisfies certain norm condition the unconditionality with respect to the system characterizes Hilbert spaces. As a noncommutative analogue we introduce the notion of unconditionality of operator spaces with respect to orthonormal systems in noncommutative L2 spaces and show that the unconditionality characterizes operator Hilbert spaces when the system is complete and satisfy certain norm condition. The proof of the main result heavily depends on free probabilistic tools such as contraction principle for ∗-free Haar unitaries, comparision of averages with respect to ∗-free Haar unitaries and ∗-free circular elements and K-covexity, type 2 and cotype 2 with respect to ∗-free circular elements.
منابع مشابه
New Bases for Polynomial-Based Spaces
Since it is well-known that the Vandermonde matrix is ill-conditioned, while the interpolation itself is not unstable in function space, this paper surveys the choices of other new bases. These bases are data-dependent and are categorized into discretely l2-orthonormal and continuously L2-orthonormal bases. The first one construct a unitary Gramian matrix in the space l2(X) while the late...
متن کاملBracket Products on Locally Compact Abelian Groups
We define a new function-valued inner product on L2(G), called ?-bracket product, where G is a locally compact abelian group and ? is a topological isomorphism on G. We investigate the notion of ?-orthogonality, Bessel's Inequality and ?-orthonormal bases with respect to this inner product on L2(G).
متن کاملNew characterizations of fusion bases and Riesz fusion bases in Hilbert spaces
In this paper we investigate a new notion of bases in Hilbert spaces and similar to fusion frame theory we introduce fusion bases theory in Hilbert spaces. We also introduce a new denition of fusion dual sequence associated with a fusion basis and show that the operators of a fusion dual sequence are continuous projections. Next we dene the fusion biorthogonal sequence, Bessel fusion basis, Hil...
متن کاملUniform Minimality, Unconditionality and Interpolation in Backward Shift Invariant Spaces
ABSTRACT. We discuss relations between uniform minimality, unconditionality and interpolation for families of reproducing kernels in backward shift invariant subspaces. This class of spaces contains as prominent examples the Paley-Wiener spaces for which it is known that uniform minimality does in general neither imply interpolation nor unconditionality. Hence, contrarily to the situation of st...
متن کاملNotes on Matrix Valued Paraproducts
X iv :m at h/ 05 12 40 7v 2 [ m at h. FA ] 1 8 Ja n 20 06 Notes on Matrix Valued Paraproducts Tao MEI 1 Abstract Denote by Mn the algebra of n×n matrices. We consider the dyadic paraproducts πb associated with Mn valued functions b, and show that the L(Mn) norm of b does not dominate ||πb||L2(l2n)→L2(l2n) uniformly over n. We also consider paraproducts associated with noncommutative martingales...
متن کامل